
Performance Results for Two of the NAS Parallel Benchmarks

David H. Bailey Paul O. Frederickson

NAS Applied Research Branch RIACS
NASA Ames Research Center NASA Ames Research Center

Moffett Field, CA 94035 Moffett Field, CA 94035

Abstract

Two problems from the recently published “NAS
Parallel Benchmarks” have been implemented on three
advanced parallel computer systems. These two
benchmarks are the following: (1) an “embarrassingly
parallel” Monte Carlo statistical calculation and (2)
a Poisson partial differential equation solver based on
three-dimensional fast Fourier transforms. The first
requires virtually no interprocessor communication,
while the second has a substantial communication re-
quirement.

This paper briefly describes the two problems stud-
ied, discusses the implementation schemes employed,
and gives performance results on the Cray Y-MP, the
Intel iPSC/860 and the Connection Machine-2.

Bailey is with the Numerical Aerodynamic Simula-
tion (NAS) Systems Division at NASA Ames Research
Center, Moffett Field, CA 94035. Frederickson is with
the Research Institute for Advanced Computer Sci-
ence (RIACS) at NASA Ames. Frederickson’s work
was funded by the NAS Systems Division via Cooper-
ative Agreement NCC 2-387 between NASA and the
Universities Space Research Association.

1 Introduction

The NAS Parallel Benchmarks [3] is a new set of
benchmarks that have been developed for the per-
formance evaluation of highly parallel supercomput-
ers. These benchmarks consist of five “parallel ker-
nels”, and three simulated computational fluid dy-
namics (CFD) application benchmarks. Together they
mimic the computation and data movement character-
istics of many large scale aerophysics applications.

These benchmarks were developed out of the real-
ization that none of the conventional approaches to
the performance benchmarking of supercomputers is
appropriate for highly parallel systems. The popular
“kernel” benchmarks that have been used for tradi-
tional vector supercomputers, such as the Livermore
Loops, the LINPACK benchmark and the original
NAS Kernels, are clearly inappropriate for the perfor-
mance evaluation of highly parallel machines. In addi-
tion to the dubious meaning of the actual performance
numbers, the computation and memory requirements
of these programs do not do justice to the vastly in-
creased capabilities of the new parallel machines, par-
ticularly those systems that will be available by the
mid-1990s.

On the other hand, a full scale scientific application
is similarly unsuitable. First of all, porting a large
application to a new parallel computer architecture
requires a major effort, and it is usually hard to justify
a major research task simply to obtain a benchmark
number. For example, there are as yet few results
for the PERFECT benchmark suite on highly parallel
systems.

An alternative to conventional benchmark strate-
gies is to specify a “paper and pencil” benchmark, i.e.
to define a set of problems only algorithmically. Even
the input data is specified only on paper. Naturally,
the problem has to be specified in sufficient detail that
a unique solution exists, and the required output has
to be brief yet detailed enough to certify that the prob-

lem has been solved correctly. The person or persons
implementing the benchmarks on a given system are
expected to solve the various problems in the most ap-
propriate way for the specific system. The choice of
data structures, algorithms, processor allocation and
memory usage are all (to the extent allowed by the
specification) left open to the discretion of the imple-
menter.

The NAS Parallel Benchmarks were constructed on
this model. They consist of eight separate benchmark
problems:

1. An “embarrassingly parallel” Monte-Carlo statis-
tical computation.

2. A simplified multigrid partial differential equa-
tion (PDE) solver.

3. A conjugate gradient eigenvalue computation
that involves unstructured matrices.

4. A Poisson PDE solver that employs three-
dimensional fast Fourier transforms (FFTs).

5. An integer sort problem, which is used in some
particle codes.

6. The LU solver of a simulated CFD application.

7. The scalar pentadiagonal solver of a simulated
CFD application.

8. The block tridiagonal solver of a simulated CFD
application.

There are several basic requirements on implemen-
tations: (1) 64-bit floating point arithmetic must be
used, (2) programs must be coded in Fortran-77 or C,
although a variety of commonly used parallel exten-
sions are allowed, (3) except for a short list of com-
mon library functions and intrinsics, assembly lan-
guage routines may not be used for any computa-
tions. Otherwise programmers are free to utilize al-
gorithms and language constructs that give the best
performance possible on the particular system being
studied. The detailed definitions of the problems to
be solved, as well as the specific language rules and
timing procedures are given in [3].

This paper describes the implementation of prob-
lems 1 and 4 on the following three systems: (1) a Cray
Y-MP with eight processors, (2) an Intel iPSC/860
system with 128 processors, and (3) a Connection
Machine-2 with 32,768 processors.

2 The “Embarrassingly Parallel”
Benchmark

In this problem, a large number of pairs of Gaussian
random deviates are generated according to a specific
scheme, and the number of pairs lying in successive
square annuli are tabulated. The only essential re-
quirement for communication in a multiprocessor im-
plementation is to collect the counts at the end. This
problem represents the essence of many Monte Carlo
physics calculations, and it is also typical of such di-
verse applications as the analysis of supercomputer
memory systems [2]. Another reason for its inclusion
in the NAS Parallel Benchmarks is to provide a con-
trast with other problems, such as the 3-D FFT PDE
solver, which require substantial interprocessor com-
munication.

The following is a brief statement of this problem.
The complete statement, plus references, are given in
[3].

Set n = 228 and s = 271828183. Generate the
pseudorandom floating point values rj in the interval
(0, 1) for 1 ≤ j ≤ 2n using the scheme described
below. Then for 1 ≤ j ≤ n set xj = 2r2j−1 − 1
and yj = 2r2j − 1. Thus xj and yj are uniformly
distributed on the interval (−1, 1).

Next set k = 0, and beginning with j = 1, test
to see if tj = x2

j + y2
j ≤ 1. If not, reject this pair

and proceed to the next j. If this inequality holds,
then set k ← k + 1, Xk = xj

√
(−2 log tj)/tj and

Yk = yj

√
(−2 log tj)/tj , where log denotes the natural

logarithm. Then Xk and Yk are independent Gaussian
deviates with mean zero and variance one. Approxi-
mately nπ/4 pairs will be constructed in this manner.

Finally, for 0 ≤ l ≤ 9 tabulate Ql as the count
of the pairs (Xk, Yk) that lie in the square annulus
l ≤ max(|Xk|, |Yk|) < l + 1, and output the ten Ql

counts. Each of the ten Ql counts must agree exactly
with reference values.

The 2n uniform pseudorandom numbers rj men-
tioned above are to be generated according to the fol-
lowing scheme: Set a = 513 and let x0 = s be the
specified initial “seed”. Generate the integers xk for
1 ≤ k ≤ 2n using the linear congruential recursion

xk+1 = axk (mod 246)

and return the numbers rk = 2−46xk as the results.
Observe that 0 < rk < 1 and the rk are very nearly
uniformly distributed on the unit interval.

An important feature of this pseudorandom num-
ber generator is that any particular value xk of the
sequence can be computed directly from the initial

seed s by using the binary algorithm for exponentia-
tion, taking remainders modulo 246 after each multi-
plication. The importance of this property for paral-
lel processing is that numerous separate segments of
a single, reproducible sequence can be generated on
separate processors of a multiprocessor system. Many
other widely used schemes for pseudorandom number
generation do not possess this important property.

3 The 3-D FFT PDE Benchmark

In this problem, a certain Poisson partial differen-
tial equation (PDE) is solved using three-dimensional
fast Fourier transform (FFT) computations. In con-
trast to the “embarrassingly parallel” problem, this
application requires substantial interprocessor com-
munication and is thus a good test of network per-
formance.

The following is a brief description of this bench-
mark. For full details, see [3].

Consider the PDE

∂u(x, t)
∂t

= α∇2u(x, t)

where x is a position in 3-dimensional space. When a
Fourier transform is applied to each side, this equation
becomes

∂v(z, t)
∂t

= −4απ2|z|2v(z, t)

where v(z, t) is the Fourier transform of u(x, t). This
has the solution

v(z, t) = e−4απ2|z|2tv(z, 0)

Now consider the discrete version of the original
PDE. Following the above, it can be solved by comput-
ing the forward 3-D discrete Fourier transform (DFT)
of the original state array u(x, 0), multiplying the re-
sults by certain exponentials, and then performing an
inverse 3-D DFT.

The specific problem to be solved in this bench-
mark is as follows. Set n1 = 256, n2 = 256, and
n3 = 128. Generate 2n1n2n3 64-bit pseudorandom
floating point values using the pseudorandom num-
ber generator in the previous section, starting with
the initial seed 314159265. Then fill the complex ar-
ray Ui,j,k, 0 ≤ i < n1, 0 ≤ j < n2, 0 ≤ k < n3,
with this data, where the first dimension varies most
rapidly as in the ordering of a 3-D Fortran array. A
single complex number entry of U consists of two con-
secutive pseudorandomly generated results. Compute

the forward 3-D DFT of U , using a 3-D fast Fourier
transform (FFT) routine, and call the result V . Set
α = 10−6 and set t = 1. Then compute

Wi,j,k = e−4απ2 (̄i2+j̄2+k̄2)tVi,j,k

where ī is defined as i for 0 ≤ i < n1/2 and i − n1

for n1/2 ≤ i < n1. The indices j̄ and k̄ are similarly
defined with n2 and n3. Then compute an inverse
3-D DFT on W , using a 3-D FFT routine, and call
the result the array X. Finally, compute the complex
checksum

∑1023
i=0 Xq,r,s where q = i (mod n1), r = 3i

(mod n2) and s = 5i (mod n3). After the checksum
for this t has been output, increment t by one. Then
repeat the above process, from the computation of W
through the incrementing of t, until the step t = N
has been completed. In this benchmark, N = 6. The
V array and the array of exponential terms for t = 1
need only be computed once. Note that the array of
exponential terms for t > 1 can be obtained as the
t-th power of the array for t = 1.

The rules of the NAS Parallel Benchmarks require
that all problems be implemented in Fortran-77 or C,
with some reasonable parallel extensions, and prohibit
the usage of assembly language computations. How-
ever, one exception to this is that vendor-supplied,
assembly-coded library routines may be employed to
compute either individual 1-D FFTs or complete 3-D
FFTs. Thus this benchmark can be used to contrast
the performance one can obtain from a Fortran imple-
mentation to an implementation that employs certain
vendor library routines.

4 System Descriptions

The Cray Y-MP used in this study is the system
in the NAS facility at NASA Ames Research Center.
It has eight processors and 128 million words of bipo-
lar random access memory. It also has 256 million
words of solid state memory, but this was not utilized
here. Its clock period is 6 nanoseconds, so that its the-
oretical peak performance rate is approximately 2.66
GFLOPS. These codes were compiled and executed
under UNICOS 6.0 system software.

The Intel iPSC/860 used in this study, which is
also at the NAS facility, employs Intel’s new RISC
processor, the i860. The system has 128 nodes, each
with eight megabytes of memory, connected with in a
hypercube network. The i860 has a theoretical peak
performance of 60 MFLOPS (64 bit), so that the the-
oretical peak performance of the system is some 7.68
GFLOPS. In practice it is hard to even approach this

rate, even from assembly code [5]. The codes were
compiled using the Portland Group Fortran compiler,
version 1.3a.

The NAS CM-2 has 32,768 bit-serial processors to-
gether with 1,024 Weitek 64-bit floating point proces-
sors and four gigabytes of memory. Its theoretical
peak performance is some 14 GFLOPS, although again
few codes can approach this rate. The 1.0 system soft-
ware, which includes the 1.0 slicewise Fortran compiler
and CMSSL library, was used in this study.

5 Implementation Techniques

Curiously, the principal algorithmic challenge in
implementing the embarrassingly parallel benchmark
problem was in devising a scheme suitable for high
performance on a Cray supercomputer. In contrast,
straightforward implementations sufficed on the Intel
and CM-2 systems.

The principal difficulty on the Cray is that the lin-
ear congruential scheme presented above for gener-
ating uniform pseudorandom numbers is not directly
vectorizable. One solution, which was employed here,
is to generate these numbers in batches of 64, which is
the hardware vector length of the Cray systems. This
may be done by first computing the multiplier ā = a64

(mod 246). The first 64 elements of the sequence xk

are computed by the scalar algorithm. Thereafter the
remainder are computed by the recursion

xk+64 = āxk (mod 246)

The acceptance-rejection operation in the genera-
tion of the Gaussian deviates, as well as the accu-
mulation of counts, also present difficulties for vector
computations, but these were resolved by reasonably
straightforward means.

In the 3-D FFT PDE problem, the principal issue
is the selection of an efficient means to compute 3-D
FFTs. On the Cray, complex arrays of size n1×n2×n3,
where n1, n2 and n3 are powers of two, were declared
with physical dimensions (n1 +1, n2 +1, n3 +1). Then
transforms were performed in all three dimensions,
with vectorization in the plane not transformed. This
is efficient on the Cray since the strides of the resulting
array accesses are always either one or else one greater
than a power of two. Either way, no bank conflicts re-
sult. The vectorized FFTs were based on a 1-D FFT
algorithm described in [1].

Multiprocessing on the Cray was achieved by in-
serting a few autotasking directives. The FFTs
were performed by an all-Fortran routine as described

above and also by calling Cray’s new library routine
CFFT3D. This routine permits both single processor
and multiprocessor runs to be made.

On the Intel, accessing arrays in each of three di-
mensions is of course not practical because in at least
one dimension, the accesses will be across processors.
Thus the following alternate scheme was employed:

1. n2n3 1-D FFTs of size n1 are performed, each on
data vectors entirely contained in a single process-
ing node (in fact, within the cache of the proces-
sor).

2. n1n3 1-D FFTs of size n2 are performed. These
data vectors are also contained within individual
nodes, since n3 never exceeds the number of nodes
used.

3. The resulting complex data array is then trans-
posed to a n3×n1×n2 array by means of a com-
plete exchange operation.

4. n1n2 1-D FFTs of size n3 are performed, again
on local node data.

5. The resulting complex data array is transposed
back to a n1 × n2 × n3 array.

Note that steps 3 and 5 require a “complete ex-
change” operation, i.e. the data in each processing
node is partitioned into p sections, where p is the
number of processors, and then each processor sends
each of its p sections to the appropriate target proces-
sor. Since this step requires substantial interprocessor
communication, it is essential that it be as efficient
as possible. Recently Bokhari [4] compared a num-
ber of schemes for this operation. The scheme used
here is the one described in that paper as the forced,
pair-wise, synchronized scheme, which is due to Seidel
[6].

Recently Kuck and Associates completed a pack-
age of assembly-coded mathematical routines for i860-
based systems, under contract to Intel. These rou-
tines included all of the basic linear algebra subrou-
tines (BLAS), plus some one-dimensional FFT rou-
tines. The double precision 1-D complex-to-complex
FFT routine from this package was incorporated into
the benchmark code, so that results have been ob-
tained using both this routine and an all-Fortran ver-
sion.

One scheme attempted on the CM-2 is similar to
that employed on the Cray, except that there is no
need for array dimensions to be one greater than pow-
ers of two. Another attempted scheme is similar to

the algorithm employed for the Intel system. Unfor-
tunately, for reasons not yet fully understood as of
the date of this paper, neither scheme exhibits even
remotely respectable performance — evidently signif-
icant parts of the computation are not really being
performed in parallel on the CM-2. However, TMC
has recently provided a rather efficient routine for
one-dimensional and multi-dimensional FFTs in the
CMSSL library. Thus this routine was employed in
the runs cited below.

One important element of the tuning for the CM-2
implementation was the specification of the layout of
the 3-D array to be transformed. This was done with
the directive

cmf$ layout X1(:serial, 1000:send, 1:send)

The authors are indebted to Robert Krawitz of TMC
for this suggestion.

All of the implementations for this benchmark em-
ploy ordered FFTs. Some improvement in perfor-
mance may be possible by using unordered (i.e. bit
reversed) FFTs. Future benchmark efforts will explore
this possibility.

6 Performance Results

The embarrassingly parallel benchmark was run for
three problem sizes: n = 224, 228 and 230. All three
systems, including the Cray, which is known for diffi-
culties with numerical inaccuracies, obtained precisely
correct counts, apparently confirming that billions of
floating operations were performed correctly (within
acceptable tolerance limits) and that the library rou-
tines SQRT and LOG returned satisfactorily accurate
results.

Performance results for this benchmark are listed
in Table 1. In accordance with the rules for the NAS
Parallel Benchmarks, run times are the elapsed time
of day from start of execution to completion, and
MFLOPS figures are for 64-bit data, with operation
counts as given in [3], which in turn are based on some
standard figures for the SQRT and LOG functions. In
cases where two or more runs were possible with the
same system on the same size problem, but with dif-
ferent numbers of processors, “speedup” figures are
shown in the sixth column. These numbers are nor-
malized based on the run with the smallest number of
processors.

Not surprisingly, these runs exhibit almost perfectly
linear speedups. What also scales linearly is the run
time versus the size of the problem — timings for

equivalent systems with n = 230 are almost exactly
four times the timings for n = 228. The results indi-
cate that on this type of problem, the full Intel sys-
tem is roughly equivalent to 2.5 Y-MP processors, and
that the full CM-2 is roughly equivalent to three Y-
MP processors.

It is interesting to note that these results are 41%,
4.7% and 3.1% of the peak performance rates of the
Y-MP, the Intel and the CM-2, respectively. The low
percentages on the Intel and CM-2 are in spite of a
minimal communication requirement. These figures
thus underscore that there is considerable room for
improvement in the performance of the Intel and CM-
2 Fortran compilers and library intrinsics.

The 3-D FFT PDE benchmark was run with the
problem sizes 64 × 64 × 64, 128 × 128 × 128 and
256 × 256 × 128. All three systems produced check-
sums at the end of each iteration that were correct to
the required 12 significant figures. Timing results are
shown in Table 2. “F” or “L” in the Code column de-
notes an all-Fortran or a library FFT (a 1-D FFT for
the Intel, and a 3-D FFT for the Cray and the CM-2).

Timings on the CM-2 were problematic for this
benchmark. The CM timing routines output two run
times: “CM elapsed time” and “CM busy time”. The
former is the elapsed time of day between start of ex-
ecution and end, and corresponds to the definition of
run time for the NAS Parallel Benchmarks. The latter
excludes time when the CM is not actually busy with
computation, such as when it is exchanging data with
the front end system.

In the first benchmark, as well as in a majority
of applications, these times are not greatly different.
However, in the 3-D FFT PDE benchmark they are
greatly different, especially in the 64×64×64 problem
size. This difference is apparently due to time spent
in transferring data and program code from the front
end to the CM-2 as part of initialization for the library
FFT routine. Thinking Machines plans to greatly re-
duce this initialization time in future software releases.
For this reason, and the fact that the CM busy timings
scale more predictably with problem size and number
of processors, the CM busy timings were also included
in the table. The CM elapsed and CM busy timings
are distinguished by “E” or “B” in the Code column.

Problem No. Time
System Size Proc. (sec.) MFLOPS Speedup
Y-MP 224 1 9.41 147.40 1.00

8 1.25 1109.60 7.53
Intel 4 122.58 11.32 1.00

8 61.30 22.63 2.00
16 31.60 43.89 3.88
32 15.77 87.95 7.77
64 7.67 180.83 15.98

128 3.84 361.20 31.92
CM-2 8K 13.11 105.80 1.00

16K 6.55 211.76 2.00
Y-MP 228 1 150.10 147.90 1.00

8 20.10 1104.48 7.47
Intel 32 245.20 90.54 1.00

64 122.61 181.06 2.00
128 61.32 362.03 4.00

CM-2 8K 201.04 110.44 1.00
16K 100.84 220.15 2.00
32K 50.92 435.98 3.95

Y-MP 230 1 603.50 147.14 1.00
8 80.63 1101.33 7.48

Intel 128 245.21 362.14
CM-2 32K 202.94 437.57

Table 1: Embarrassingly Parallel Benchmark Performance Results

Problem No. Time
System Code Size Proc. (sec.) MFLOPS Speedup
Y-MP F 64× 64× 64 1 1.21 156.85

L 1 0.82 231.46
Intel F 4 17.08 11.11 1.00

F 8 9.01 21.06 1.90
F 16 4.77 39.78 3.58
F 32 2.51 75.68 6.81
L 4 11.87 15.99 1.00
L 8 6.39 29.70 1.86
L 16 3.41 55.68 3.48
L 32 1.84 103.29 6.46

CM-2 LE 8K 10.76 17.64
LB 8K 3.16 60.06 1.00
LE 16K 8.24 23.03
LB 16K 1.82 104.29 1.74

Y-MP F 128× 128× 128 1 10.27 169.33
L 1 7.14 243.56 1.00

Intel F 32 19.32 90.02 1.00
F 64 9.95 174.82 1.94
F 128 5.45 319.34 3.54
L 32 13.70 126.89 1.00
L 64 7.14 243.67 1.92
L 128 4.05 429.77 3.39

CM-2 LE 8K 30.79 56.48
LB 8K 24.67 70.49 1.00
LE 16K 17.11 101.64
LB 16K 12.07 144.08 2.04
LE 32K 13.06 133.15
LB 32K 6.13 283.69 4.02

Y-MP F 2562 × 128 1 39.23 192.23 1.00
F 8 5.17 1458.61 7.59
L 1 29.31 257.28 1.00
L 8 6.15 1226.18 4.77

Intel F 128 22.22 339.44
L 128 15.13 498.45

CM-2 LE 16K 51.20 147.29
LB 16K 47.06 160.24 1.00
LE 32K 28.59 263.76
LB 32K 24.50 307.80 1.92

Table 2: 3-D FFT PDE Benchmark Performance Rates

The results for this benchmark definitely indicate
sub-linear speedup with increasing numbers of proces-
sors on the Intel. On the 643 problem, the Intel sys-
tem (with the library 1-D FFT routine) is only 6.5
times faster with 32 processors than with 4. The CM-
2 is better in this regard: on the 1283 problem, the
CM-2 is actually 4.02 times faster with 32K proces-
sors than with 8K, although a fall-off in performance
is seen with the other two problem sizes. Curiously,
the all-Fortran Cray program exhibited more nearly
linear speedups and actually out-performed the li-
brary FFT-based program with eight processors on
the 256× 256× 128 problem.

However, it should be emphasized that speedup
figures can be easily misinterpreted. For example,
one reason that the speedup figures are not worse
on the Intel is that the current Intel Fortran com-
piler is still not achieving nearly the performance that
can be obtained through assembly coding. The single
node performance rate for the all-Fortran code on the
Intel system is only about 3 MFLOPS, whereas the
peak 64-bit performance of the i860 is 60 MFLOPS.
When a more powerful compiler becomes available,
then these speedup figures can be expected to fall off
more rapidly, because the performance will be domi-
nated to a greater extent by communication costs.

The performance rates on the largest problem size
indicate that the full Intel system is roughly equiva-
lent to 1.9 Y-MP processors (comparing library FFT
timings), and that the CM-2 is roughly equivalent to
1.2 Y-MP processor (comparing the CM busy timings
with the Y-MP library rates). The fact that these ra-
tios are not as favorable to the highly parallel systems
on the 3-D FFT PDE benchmark as they were on the
embarrassingly parallel benchmark is clearly due to
the more demanding communication requirement in
the 3-D FFT.

7 Conclusions

With some algorithmic experimentation and im-
plementation tuning, all three of the tested systems
were able to obtain “respectable” performance rates
on these two benchmark problems. However, the In-
tel and CM-2 systems, while showing promise, are not
yet demonstrating on these problems the consistently
high level of sustained performance that users of Cray
systems have come to expect (comparing full systems
to full systems).

It is true that the performance of highly parallel
computers on a particular application can in some

cases be significantly improved by employing alter-
nate algorithms that feature less costly communica-
tion. However, in many cases, including the 3-D FFT
PDE benchmark and other problems that require in-
tensive computations in each dimension of three di-
mensional arrays, only modest improvement can be
achieved in this manner, since a certain amount of
communication is unavoidable. Also, many CFD ap-
plications and other hyperbolic PDE problems must
employ implicit algorithms in order to obtain a solu-
tion in a reasonable amount of time, and these implicit
algorithms require substantial long-distance commu-
nication. What this means is that the usability of a
highly parallel system will be quite limited if it cannot
perform well on communication intensive problems.
Thus it is hoped that the next generation of highly
parallel supercomputers will feature greatly increased
communication performance.

References

[1] Bailey, D. H., “A High-Performance FFT Algo-
rithm for Vector Supercomputers, International
Journal of Supercomputer Applications, vol. 2
(1988), p. 82 – 87.

[2] Bailey, D. H., “Vector Computer Memory Bank
Contention”, IEEE Transactions on Computers,
vol. C-36, no. 3 (Mar. 1987), p. 293 - 298.

[3] Bailey, D. H., Barton, J. T., Lasinski, T. A, and Si-
mon, H. D., eds., “The NAS Parallel Benchmarks”,
RNR Technical Report RNR-91-002, NASA Ames
Research Center, January 1991.

[4] Bokhari, S. H., “Complete Exchange on the iPSC-
860”, ICASE Report No. 91-4, NASA Langley Re-
search Center, January 1991.

[5] Lee, K., “On the Floating Point Performance of
the i860 Microprocessor”, RNR Technical Report
RNR-90-019, NASA Ames Research Center, Octo-
ber 1990.

[6] Seidel, S., Lee, M-H., and Fotedar, S., “Con-
current Bidirectional Communication on the Intel
iPSC/860 and iPSC/2”, Technical Report CS-TR
9006, Dept. of Computer Science, Michigan Tech-
nical University, Nov. 1990.

